Skip to main content
Log in

Alcohol spiked with zolpidem and midazolam potentiates inflammation, oxidative stress and organ damage in a mouse model

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

Crime-related spiking of alcoholic drinks with prescription drugs is quite common and has been happening for centuries. This study, therefore, evaluated the effects of oral administration of alcohol spiked with the zolpidem and midazolam potent sedatives on inflammation, oxidative stress and various organ damage in male Swiss albino mice.

Methods

Mice were randomly assigned into six treatment groups; the first group constituted the normal control, the second group received 50 mg/kg body weight of zolpidem only, the third group received 50 mg/kg body weight zolpidem dissolved in 5 g/kg alcohol, the fourth group received 50 mg/kg midazolam only, the fifth group received midazolam (50 mg/kg) dissolved in 5 g/kg alcohol and the sixth group received 5 g/kg alcohol.

Results

Alcohol-induced significant reduction in neurological function and altered blood hematological indicators. Such neurological impairment and negative effects on blood were exacerbated in mice administered with spiked alcohol. Additionally, midazolam and zolpidem enhanced alcohol-driven elevation of liver function markers; the serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) gamma glutamyltransferase (GGT), total bilirubin and alkaline phosphatase. Exposure to alcohol and/or spiked alcohol led to significant augmentation of nitric oxide and malonaldehyde, with concomitant depletion of liver glutathione (GSH) levels. Similarly, serum levels of pro-inflammatory cytokines tumor necrosis factor alpha and interferon-gamma were increased by co-exposure with midazolam or zolpidem. Alcohol-induced hepatotoxicity and nephrotoxicity were amplified by exposure to alcohol spiked with midazolam/zolpidem.

Conclusion

Exposure to alcohol spiked with midazolam or zolpidem appears to exacerbate neurological deficits, inflammation, oxidative stress, and organ damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aldahmash BA, El-nagar DM (2013) Histological study on the hazardous effects of ethanol on liver and spleen in Swiss albino mice. The FASEB J 7:2445–2452

    Google Scholar 

  2. Hao L, Xie Y, Wu G, Cheng A, Liu X, Zheng R, Huo H, Zhang J (2015) Protective effect of hericium erinaceus on alcohol induced hepatotoxicity in mice. Evid Based Complement Alternat Med 2015:418023

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhou T, Zhang YJ, Xu DP, Wang F, Zhou Y, Zheng J, Li Y, Zhang JJ, Li HB (2017) Protective effects of lemon juice on alcohol-induced liver injury in mice. Biomed Res Int 2017:7463571

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lachenmeier DW, Neufeld M, Rehm J (2021) The impact of unrecorded alcohol use on health: what do we know in 2020? J Stud Alcohol Drugs 82:28–41

    Article  PubMed  Google Scholar 

  5. Shin SK, Kaiser EE, West FD (2021) Alcohol induced brain and liver damage: advantages of a porcine alcohol use disorder model. Front Physiol 11:592950

    Article  PubMed  PubMed Central  Google Scholar 

  6. Furukawa Y, Tanemura K, Igarashi K, Ideta-Otsuka M, Aisaki K, Kitajima S, Kitagawa M, Kanno J (2016) Learning and memory deficits in male adult mice treated with a benzodiazepine sleep-inducing drug during the juvenile period. Front Neurosci 10:339

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gunja N (2013) The clinical and forensic toxicology of Z-drugs. J Med Toxicol 9:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen Y, Zhang K, Wang R, Sun S, Yang Y, Yao Y, Liu H, Ren Z (2022) MCPIP1 alleviated alcohol-induced immune dysfunction via the MAPK/ERK signaling pathway. Psychopharmacology 239:3485–3493

    Article  CAS  PubMed  Google Scholar 

  9. Hughes H, Peters R, Davies G, Griffiths K (2007) A study of patients presenting to an emergency department having had a “spiked drink.” Emerg Med J 24:89–91

    Article  PubMed  PubMed Central  Google Scholar 

  10. World Drug Report 2018 (United Nations publication, Sales No. E.18.XI.9).

  11. Carroll RW, Wainwright MS, Kim KY, Kidambi T, Gómez ND, Taylor T, Haldar K (2010) A rapid murine coma and behavior scale for quantitative assessment of murine cerebral malaria. PLoS ONE 5:e13124

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kipchumba B, Isaac AO, Mwaeni VK, Omwenga G, Ngugi M, Nyariki JN (2023) Vitamin B12 and coenzyme Q10 ameliorated alcohol-driven impairment of hematological parameters, inflammation, and organ damage in a mouse model. Nutrire 48:13

    Article  CAS  Google Scholar 

  13. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  CAS  PubMed  Google Scholar 

  14. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  PubMed  Google Scholar 

  15. Alen F, Orio L, Gorriti MA, de Heras RG, Ramirez-Lopez MT, Pozo MA, de Fonseca FR (2013) Increased alcohol consumption in rats after subchronic antidepressant treatment. Int J Neuropsychopharmacol 16:1809–1818

    Article  CAS  PubMed  Google Scholar 

  16. Haas CE, Magram Y, Mishra A (2003) Rhabdomyolysis and acute renal failure following an ethanol and diphenhydramine overdose. Ann Pharmacother 37:538–542

    Article  PubMed  Google Scholar 

  17. Sung DJ, Lee M, Park JK, Park HJ (2018) Combination of antidepressant and alcohol intake as a potential risk factor for rhabdomyolysis. Iran J Public Health 47:1424–1425

    PubMed  PubMed Central  Google Scholar 

  18. Liu D, Liu S, Li J, Liu X, Wu X, Peng Y, Shen Q (2022) Proteome-wide analysis of the hippocampus in adolescent male mice with learning and memory impairment caused by chronic ethanol exposure. Neurobiol Learn Mem 194:107661

    Article  CAS  PubMed  Google Scholar 

  19. Mira RG, Lira M, Quintanilla RA, Cerpa W (2020) Alcohol consumption during adolescence alters the hippocampal response to traumatic brain injury. Biochem Biophys Res Commun 528:514–519

    Article  CAS  PubMed  Google Scholar 

  20. Kawashima Y, Someya Y, Shirato K, Sato S, Ideno H, Kobayashi K, Tachiyashiki K, Imaizumi K (2011) Single administration effects of ethanol on the distribution of white blood cells in rats. J Toxicol Sci 36:347–355

    Article  CAS  PubMed  Google Scholar 

  21. Ballard HS (1997) The hematological complications of alcoholism. Alcohol Health Res World 21:42–52

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Oyedeji KO, Bolarinwa AF, Fashina AM (2013) Effect of alcohol consumption on haematological and reproductive parameters in female albino rats. J Med Dent Sci 3:76–79

    Google Scholar 

  23. Silczuk A, Habrat B (2020) Alcohol-induced thrombocytopenia: Current review. Alcohol 86:9–16

    Article  PubMed  Google Scholar 

  24. Wang J, Du H, Jiang L, Ma X, de Graaf RA, Behar KL, Mason GF (2013) Oxidation of ethanol in the rat brain and effects associated with chronic ethanol exposure. Proc Natl Acad Sci USA 110:14444–14449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Silczuk A, Habrat B, Lew-Starowicz M (2019) Thrombocytopenia in patients hospitalized for alcohol withdrawal syndrome and its associations to clinical complications. Alcohol Alcohol 54:503–509

    Article  CAS  PubMed  Google Scholar 

  26. Latvala J, Parkkila S, Niemelä O (2004) Excess alcohol consumption is common in patients with cytopenia: studies in blood and bone marrow cells. Alcohol Clin Exp Res 28:619–624

    Article  PubMed  Google Scholar 

  27. Yokoyama A, Yokoyama T, Mizukami T, Matsui T, Kimura M, Matsushita S, Higuchi S, Maruyama K (2017) Platelet counts and genetic polymorphisms of alcohol dehydrogenase-1B and aldehyde dehydrogenase-2 in Japanese alcoholic men. Alcohol Clin Exp Res 41:171–178

    Article  CAS  PubMed  Google Scholar 

  28. Liu L, Chen M, Zhao L, Zhao Q, Hu R, Zhu J, Yan R, Dai K (2017) Ethanol induces platelet apoptosis. Alcohol Clin Exp Res 41:291–298

    Article  CAS  PubMed  Google Scholar 

  29. Gao HY, Huang J, Wang HY, Du XW, Cheng SM, Han Y, Wang LF, Li GY, Wang JH (2013) Protective effect of Zhuyeqing liquor, a Chinese traditional health liquor, on acute alcohol-induced liver injury in mice. J Inflamm 10:30

    Article  Google Scholar 

  30. Jin S, Cao Q, Yang F, Zhu H, Xu S, Chen Q, Wang Z, Lin Y, Cinar R, Pawlosky RJ, Zhang Y, Xiong W, Gao B, Koob GF, Lovinger DM, Zhang L (2021) Brain ethanol metabolism by astrocytic ALDH2 drives the behavioural effects of ethanol intoxication. Nat Metab 3:337–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hernández-Rubio A, Sanvisens A, Bolao F, Pérez-Mañá C, García-Marchena N, Fernández-Prendes C, Muñoz A, Muga R (2020) Association of hyperuricemia and gamma glutamyl transferase as a marker of metabolic risk in alcohol use disorder. Sci Rep 10:20060

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tian T, Liu XR, Li TT, Nie ZC, Li SJ, Tang Y, Gu CW, Xu WD, Jia H (2021) Detrimental effects of long-term elevated serum uric acid on cognitive function in rats. Sci Rep 11:6732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsai JP, Lee CJ, Subeq YM, Lee RP, Hsu BG (2017) acute alcohol intoxication exacerbates Rhabdomyolysis-induced acute renal failure in rats. Int J Med Sci 14:680–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee YJ, Cho S, Kim SR (2021) Effect of alcohol consumption on kidney function: population-based cohort study. Sci Rep 11:2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jedidi S, Aloui F, Selmi S, Selmi H, Sammari H, Ayari A, Abbes C, Sebai H (2022) Antioxidant properties of Salvia officinalis decoction extract and mechanism of its protective effects on ethanol-induced liver and kidney injuries. J Med Food 25:546–556

    Article  CAS  PubMed  Google Scholar 

  36. Osna NA, Donohue TM Jr, Kharbanda KK (2017) Alcoholic liver disease: pathogenesis and current management. Alcohol Res Current Rev 38:147–161

    Google Scholar 

  37. Israel Y, Orrego H, Colman JC, Britton RS (1982) Alcohol-induced hepatomegaly: pathogenesis and role in the production of portal hypertension. Fed Proc 41:2472–2477

    CAS  PubMed  Google Scholar 

  38. Zakhari S, Li TK (2007) Determinants of alcohol use and abuse: Impact of quantity and frequency patterns on liver disease. Hepatology 46:2032–2039

    Article  CAS  PubMed  Google Scholar 

  39. Giannini EG, Testa R, Savarino V (2005) Liver enzyme alteration: a guide for clinicians. CMAJ 172:367–379

    Article  PubMed  PubMed Central  Google Scholar 

  40. Crabb DW, Im GY, Szabo G, Mellinger JL, Lucey MR (2020) Diagnosis and treatment of alcohol-associated liver diseases: 2019 practice guidance from the american association for the study of liver diseases. Hepatology 71:306–333

    Article  PubMed  Google Scholar 

  41. Alatalo P, Koivisto H, Puukka K, Hietala J, Anttila P, Bloigu R, Niemelä O (2009) Biomarkers of liver status in heavy drinkers, moderate drinkers and abstainers. Alcohol Alcoholism 44:199–203

    Article  CAS  PubMed  Google Scholar 

  42. Woreta TA, Alqahtani SA (2014) Evaluation of abnormal liver tests. Med Clin North Am 98:1–16

    Article  PubMed  Google Scholar 

  43. Minzer S, Losno RA, Casas R (2020) The effect of alcohol on cardiovascular risk factors: is there new information? Nutrients 12:912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Angassa D, Solomon S, Seid A (2022) Factors associated with dyslipidemia and its prevalence among awash wine factory employees, Addis Ababa, Ethiopia: a cross-sectional study. BMC Cardiovasc Disord 22:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang S, Li J, Shearer GC, Lichtenstein AH, Zheng X, Wu Y, Jin C, Wu S, Gao X (2017) Longitudinal study of alcohol consumption and HDL concentrations: a community-based study. Am J Clin Nutr 105:905–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chien SC, Chen CY, Lin CF, Yeh HI (2017) Critical appraisal of the role of serum albumin in cardiovascular disease. Biomark Res 5:31

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kotoh K, Fukushima M, Horikawa Y, Yamashita S, Kohjima M, Nakamuta M, Enjoji M (2012) Serum albumin is present at higher levels in alcoholic liver cirrhosis as compared to HCV-related cirrhosis. Exp Ther Med 3:72–75

    Article  CAS  PubMed  Google Scholar 

  48. Sun L, Yin H, Liu M, Xu G, Zhou X, Ge P, Yang H, Mao Y (2019) Impaired albumin function: a novel potential indicator for liver function damage? Ann Med 51:333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baldassarre M, Domenicali M, Naldi M, Laggetta M, Giannone FA, Biselli M, Patrono D, Bertucci C, Bernardi M, Caraceni P (2016) Albumin homodimers in patients with cirrhosis: clinical and prognostic relevance of a novel identified structural alteration of the molecule. Sci Rep 6:35987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Das RN, Lee Y, Sengupta S, Sahoo RK, Mukherjee S (2019) Complex association of albumin with other liver biomarkers. J gastroenterol dig syst 6:132–137

    Google Scholar 

  51. Hillmer AT, Nadim H, Devine L, Jatlow P, O’Malley SS (2020) Acute alcohol consumption alters the peripheral cytokines IL-8 and TNF-α. Alcohol 85:95–99

    Article  CAS  PubMed  Google Scholar 

  52. Neupane SP, Skulberg A, Skulberg KR, Aass HC, Bramness JG (2016) Cytokine changes following acute ethanol intoxication in healthy men: a crossover study. Mediators Inflamm 2016:3758590

    Article  PubMed  PubMed Central  Google Scholar 

  53. Qin L, He J, Hanes RN, Pluzarev O, Hong JS, Crews FT (2008) Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation 5:10

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schopfer FJ, Baker PR, Freeman BA (2003) NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci 28:646–654

    Article  CAS  PubMed  Google Scholar 

  55. MacMillan-Crow LA, Crow JP, Thompson JA (1998) Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37:1613–1622

    Article  CAS  PubMed  Google Scholar 

  56. Lokuta AJ, Maertz NA, Meethal SV, Potter KT, Kamp TJ, Valdivia HH, Haworth RA (2005) Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation 111:988–995

    Article  CAS  PubMed  Google Scholar 

  57. Ara J, Przedborski S, Naini AB, Jackson-Lewis V, Trifiletti RR, Horwitz J, Ischiropoulos H (1998) Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc Natl Acad Sci U S A 95:7659–7663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koeck T, Levison B, Hazen SL, Crabb JW, Stuehr DJ, Aulak KS (2004) Tyrosine nitration impairs mammalian aldolase A activity. Mol Cell Proteomics 3:548–557

    Article  CAS  PubMed  Google Scholar 

  59. Slatter DA, Bolton CH, Bailey AJ (2000) The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia 43:550–557

    Article  CAS  PubMed  Google Scholar 

  60. Yuksel N, Uzbay IT, Karakiliç H, Aki OE, Etik C, Erbaş D (2005) Increased serum nitrite/nitrate (NOx) and malondialdehyde (MDA) levels during alcohol withdrawal in alcoholic patients. Pharmacopsychiatry 38:95–96

    Article  CAS  PubMed  Google Scholar 

  61. Das SK, Varadhan S, Dhanya L, Mukherjee S, Vasudevan DM (2008) Effects of chronic ethanol exposure on renal function tests and oxidative stress in kidney. Indian J Clin Biochem 23:341–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rajput P, Jangra A, Kwatra M, Mishra A, Lahkar M (2017) Alcohol aggravates stress-induced cognitive deficits and hippocampal neurotoxicity: protective effect of melatonin. Biomed Pharmacother 91:457–466

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful for the Department Pharmaceutical Technology, School of Health Sciences and Technology of the Technical University of Kenya center for all the reagents, drugs, facilities and equipment provided.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nyariki James Nyabuga.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

All experimental techniques and protocols involving mice were sought and approved by Institutional review for approval Committee (IRC) of the Institute of Primate Research Karen, Kenya (ISERC/08/2017). All experiments were conducted in compliance with the recommendations of Helsinki’s declaration on guiding principles on care and use of animals in biomedical research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 62 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kipchumba, B., Gitonga, F., Jepchirchir, C. et al. Alcohol spiked with zolpidem and midazolam potentiates inflammation, oxidative stress and organ damage in a mouse model. Forensic Toxicol 42, 45–59 (2024). https://doi.org/10.1007/s11419-023-00674-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-023-00674-w

Keywords

Navigation